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Abstract

The Dirac spectra and the eta invariants of three-dimensional Bieberbach manifolds are computed.
Compact connected three-dimensional spin manifolds admitting parallel non-vanishing spinors are
identified as flat tori. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Bieberbach manifolds are flat connected compact manifolds. In this article we study the
spectrum of their Dirac operator.

Atfirst, areview of Bieberbach’s theorems is given. One of them states that every Bieber-
bach manifoldM is covered by a flat torug”. We will see that spinors oM correspond
to spinors onT”" satisfying a certain equivariance condition (2). The Dirac eigenvalues
of M are contained in the Dirac spectrum ®f, and in general the multiplicities of the
eigenvalues of\f are smaller than those @f". The Dirac spectrum of flat tori is well
known, it depends on the choice of the spin structure. This result is due to Friedrich ([7],
see also [1]). In order to calculate the eigenvalues on Bieberbach manifolds we lift the
eigenspinors to the universal coverii®j. By representation theory of finite groups we
get formulae for the multiplicities of the Dirac eigenvaluesif The method we use
is related to the one Bar applied to compute the Dirac spectra of spherical space forms
(see [2]).
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An explicit classification of three-dimensional orientable Bieberbach manifolds is avail-
able: there are only six distinct affine equivalence classes of such manifolds. For every case
there exist several distinct spin structures which are classified in Theorem 3.3. In Theorems
5.4 and 5.7 we compute the Dirac spectra for all these cases. Eigenvalue 0 occurs only
in the case of the flat torug® with the trivial spin structure (see Theorem 5.1). Since the
asymmetric components of these Dirac spectra have very simple forms itis easy to compute
the eta invariants (Theorem 5.6).

An interesting observation can be made: there are examples of Bieberbach manifolds
(G2,G4) for which a change of spin structures causes another qualitative behaviour of
the Dirac spectrum. For some spin structures the spectrum is symmetric, for other spin
structures it possesses an asymmetric component. This also illustrates the dependence of
the eta invariants on the choice of the spin structure.

Section 6 is dedicated to parallel spinors. Two characterisations of flat tori are given: any
three-dimensional compact connected spin manifold carrying a hon-zero parallel spinor is
a flat torus (Theorem 6.1). Am-dimensional oriented Bieberbach manifold for which the
kernel of the Dirac operator has dimensid#/2 is isometric to a torus (Theorem 6.2).

2. Flat manifolds

It is well known that any flat complete manifoltd of dimensionn is isometric to
the quotientG\R", whereG is a suitable subgroup of the Euclidean motiding:) =
O(n) x R".

For every elemeng € E(n) there existA € O(n) anda € R”" such that for alk € R"
we havegx = Ax+ a, and we writeg = (A, a).

One defines homomorphisms. E(n) — O(n) andt : R* — E(n) byr(A,a) = A
andr(a) = (1, a). Obviously: is injective, therefore we may considef as a subgroup of
E(n), the pure translations.

The subgroup (G) C O(n) is called theholonomyof G since it is isomorphic to the
holonomy of M (see [5]).

A general result on the holonomy group of connected Riemannian manifolds states that
a manifold is orientable if and only if its holonomy consists of isometries preserving the
orientation of a given tangent space (see [10, p. 123]). So we get the following lemma.

Lemma 2.1. A flat manifoldM = G\R" is orientable iffr (G) c SOn).

Now we take a look at Bieberbach manifolds: a subgréug E (n) acting properly dis-
continuously ofiR” such thalG\R" is compact is called Bieberbach groupThe structure
of Bieberbach groups is described by the following theorem.

Theorem 2.2(Bieberbach).Let G be a Bieberbach group. Then the holonomy r(G) is finite
and the set or pure translations in G definedlas= G N R” is a lattice

From the proof given in [5, p. 17ff.] also two other things follow: the actiom@¥) on
R" leavesI” invariant, i.e.y(G) acts onl". Moreover, one has a short exact sequenee 0
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I' > G — r(G) — 1. Hencel' = ker(r) is a normal subgroup af with r(G) = G/T.
This implies the following.

Theorem 2.3(Bieberbach, [3]).Every Bieberbach manifold is normally covered by a flat
torus, and the covering map is a local isometry.

The flat torus isT” := I'\R", and the action ofA € r(G) on T" is given as follows:

chooseg € G with r(g) = A and setA - [x]r := [gXr. Thus we getM" = r(G)\T".
Bieberbach manifolds are well described by their fundamental groups as we see next.

Proposition 2.4. Let G1, G» C E(n) be Bieberbach groups, let : G1 — G2 be an

isomorphism. Then there is an affine transformatiore GL(n) x R” such that for all

g €Gro(g) =aga L.

Proof. See [5, p. 19]. O

We call two Bieberbach manifoldg; andM> affine equivalenfthere exists a diffeomor-
phismF : My — M> whose lift to the universal Riemannian coverings: R" — My,
o © R" — M3 is an affine linear map : R — R” such that the following diagram
commutes:

a
R* — R

F
M1 —_— Mg.

A consequence of Proposition 2.4 is the following theorem.

Theorem 2.5(Bieberbach).Two Bieberbach manifolds are affine equivalent if their fun-
damental groups are isomorphic.

The next theorem states that in principle one should be able to classify Bieberbach
manifolds of a given dimension.

Theorem 2.6 (Bieberbach, [4]).Let n be a positive integer. Then the number of affine
equivalence classes of n-dimensional Bieberbach manifolds is finite.

Proof. See [5, p. 65]. O

In the case of dimension < 3 there are explicit classifications. Since we will do spin
geometry we are interested in orientable Bieberbach manifolds only. In dimension 1 and 2
the only orientable Bieberbach manifolds are flat tori (see [12, p. 77]). In dimension 3 the
classification is a bit more interesting.

Theorem 2.7 (Hantzsche, Wendt)Let M be an orientable Bieberbach manifold of di-
mension three. Then M is affine equivalentio,R® whereG; is one of the following six
groups. In every case a basis of the latfiRgN G; is denoted byas, as, az}, the translation
associated t@; is calleds;, j =1, 2, 3.



370

F. Pfaffle / Journal of Geometry and Physics 35 (2000) 367-385

Generators of5;

Defining relations

G1
G2

G3

G4

G5

G6

11,12, 13

with {a1, a0, a3} any basis oRR3
11,12,13, &

with ay € [az, as]t, a = (A, %al),
where Aa = a1, Aap = —ap, Aag =
—as

11,12,13,

with a1 € [az,a3]*, laz| = |asl,
az and a3z generate a plane regu-
lar hexagonal latticex: = (A, 3a1),
where Aa = a1, Aap = a3, Aag =
—ay — a3z

11,12,13,

with a1, a2, az mutually orthogonal
laz| = lasl, @ = (A, }a1), where
Aay = a1, A = a3, Aag = —az

11, 12,13,

with a1 € [ap, a3]*, laz| = |asl,

az and az generate a plane regu-
lar hexagonal latticex = (A, £a1),
where Aa = a1, Aap = a3, Aag =
—a + a3z

1,02, 13, @, B,y
with a1, az, az mutually orthogonal

a = (A, 3a1), B = (B, 302+ 3a3),
y = (C, %al + %az + %ag), where
Aas = a1, Axp = —ap, Aag = —as,
Ba; = —aj1, Bap = ap, Bag = —ags,
Ca = —a1,Cap = —ap,Cag = a3

tty = txtyVk, 1

nty = vk, 1, o’ = 11,
atza_l=t£1,at3a_1=t§l
nty = vk, 1, o = 1,
atza’l = 13, atga’l =
tytegt

ate = twyvk, 1, a® = 1,

atza_l =13, ottga_l = tz_l

uty = vk, l, b = 1,
anat =13, a0t = 1,13

nty = vk, 1, a? = 11,
oatzoz_l = t;l, Oll30l_l =
tg_lv ﬁtlﬂ_l — t]__lu '82 —
t2, Btap~t = 13_17 yny ! =
nh vyt =05ty =1,
yBa = i3

Proof. The generators and relations are given in [12, p. 117]. In [9] it is shown that these
are the defining relations. O

The affine equivalence classes are denoted by. G1 G6, the associated Bieberbach
groups are called G. .. , Gg. With some additional elementary considerations one gets
the following theorem.

Theorem 2.8. Every orientable Bieberbach manifold of dimension three is isometric to
Gi\R3, whereG, is one of the following groups, the parameters are to be chosen suitably.
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Generators of5; Basis of lattice Parameters
G1 11,12, 13 ai, az,az any
basis ofR3
G2 11,12, 13, A a1 = (0,0, H), A m-rotation H, L S >
with ¢ = a» = (L, 0,0), aboutz-axis 0, T eR
(A, 3a1) az= (T, $,0)
G3 1.3« ap=(0,0,H), A Z-rotation H,L>0
with @ = a; = (L, 0,0), aboutz-axis
(A, ta1) a3 =
(—3L, (V3/2)L,0)
G4 n, 1,13, o a1 = (0,0, H), A Z-rotation H,L>0
with ¢ = a» = (L,0,0), aboutz-axis
(A, 3a1) az=(0,L,0)
G5 1,12, 13, @ a1 = (0,0, H), A Z-rotation H,L>0
with @ = a» = (L, 0,0), aboutz-axis
(A, a1) as =
(3L. (v/3/2)L,0)
G6 1, t2, 13, o, B, y With a1 = (0,0, H), A m-rotation H,L,S>0
a = (A 3a),p= a=(L,00), about z-axis
(B, 3a2+3a3),y =  az3=(0,5,0) B -rotation
(C, 3a1+3a2+3a3) about x-axis,
C m-rotation
abouty-axis
In particular the holonomy (G;) is cyclic fori =2, ... , 5.

3. Spin structures

Let Ci(n) denote the Clifford algebra d&”, i.e., the complex algebra generatedity
with the relations - w 4+ w - v+ 2(v, w) = O for allv, w € R". The space of an irreducible
representation ofl(n) is =, = CX with K = 2["/21 Forp = 3 the representation can be
given by the Pauli matrices (see [8]):

() ()

The group Spin(n) sits i€/ (n):

0 1

Spin(n) = {v1--- vl k €N, |v;| =1 foralli =1,..., 2k},

1)
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and there is the double covering
A . Spin(n) — SQ(n), ur> W u-v-u b,

Next, we describe the spin structures on an oriented Bieberbach mabifetdG\R".
We proceed as in [8]. Sind®” is simply connected it carries only one spin structure — the
trivial one:

PspinR* == R" x Spin(n)
l A l idxA
PsoRn = R" x SO(TZ)

where PsoR" denotes the set of all oriented orthonormal bases of tangent spai&s of
The action ofG on PsgR” is given by

g(x, (v1,...vy)) = (g% (dg(v1), ... ,dg(vy))) = (@X r(g)(v1, ..., vy))

forallx € R", (v1,...,v,) € SOn). We getPsoM = G\ PsoR". Now there are two lifts
g* of g such that

+
PSpian > PSpian

| |+
9
PsoRn _— PgoRn

Proposition 3.1. There is aone-to-onecorrespondence between the spin structures on M
and the actions: of G on PspinfR" with: a(g) € {g*)forall g € G.

Proof. See [8, p. 46]. O
The spin structure associated to suchwda given by

G\ PspinR" — G\ PsoR" = PsoM.
For g* we can findA* € A~1(+~1(g)) such that for allx, s) € R” x Spin(n),

g = (gx A%s).

From Proposition 3.1 one gets the following proposition.

Proposition 3.2. The spin structures o = G\R”" with the induced orientation are in
bijective relation to the homomorphisms G — Spin(n) with

Spin(n)

A

G — SO(n).



F. Pfaffle / Journal of Geometry and Physics 35 (2000) 367-385 373

Given a homomorphism with » = A o ¢ one defines an actiamonR"” x Spin(n) via
a(g)(x,s) = (g% &(g)s), and one gets a spin structure as described above.

In order to classify the spin structures on oriented Bieberbach manifolds of dimension 3
we have to recall a simple fact concerning groups: let a gtobye given by generators and
relations, let be a map from the set of the generatorg/ahto a groupH . Thene extends
to a homomorphisn&d — H if and only if the same relations hold for theimages of the
generators. Considering thepreimages of (g) for every generatog of G and checking
the relations we get the following theorem.

Theorem 3.3. LetG; € SO(3) x R" be a Bieberbach group as in Theor@8.Then one
gets every spin structure o = G;\RR3 by taking one of the homomorphisms G; —
Spin(3) with r = A o ¢ whose values on the generators(gfare given by the following

Gl ai — 81, ax — 81, 82, 83 € {£1}
82, az > 63

G2 a1 — -1 ay» — 81, 82, 83 € {£1}
82, az +— 83, o —
d1e1e2

G3 a; — —61, az — 81 € {£1}

1, a3 — 1, 0 —
81(3 + (v/3/2)e1e2)
G4 ai — -1, a» — 81, 62 € {£1}
82, a3z = &2,
a > 81(vV2/2 +
(v2/2)e1e2)
G5 a —~ =1, ap — 81 € {£1}
1, a3z — 1, a —
81(v/3/2 + Seieo)

G6 al — -1, a» = 81,682,803 € {£1}
-laz3 ~» -1, a — withdy - 82 -83=1
d1e1€2, B+ Szezes, Y >
dzeze1

In particular, in the case§&1 and G2 there are eight distinct spin structures, {68 and
G5there are two, and fo664 and G6 there are four

In the cases G2—G5 one can writ@x) alternatively ag (o) = 81(coS¢/2) + sin(¢/2)
e1e2) With ¢ = 27 /k andk = #r(G;).

4. Spectra

Now, letM = G\R" be a Bieberbach manifold with the spin structure givers by; —
Spin(n). The spinor bundle a#/ is the associated bundieM = PspinM X spinn) Zp. FOr
R" itis trivial: TR" = R" x X,.
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We may identify= M = G\XR", whereg € G acts onZR”" by g(x, o) = (gx €(g)o)
for all (x, o) € ZR". Therefore, one can consider spinorsMmas mapsV : R" — %,
satisfying for allg € G:

W —¢e(g)Wog L. (2)

Let V denote the Levi-Civita connection for spinors, and iebe the Dirac operator
onM.

ForT" = I'\R” the spectrum oD? is already known (see [7]): let the spin structure of
T" be given bye : I' — {£1} C Spin(n), letay, ... , a,; be a basis of the dual lattide*
of I". We define

v Ez Withg(:al):—lal . )
The D2-eigenspinors off* are given by
\I/Z R'—= %, X = eXp(Zni(b,x))crj,
whereb € T'* +q,, and{c/ | j = 1, ..., 2["/2l} is the standard basis af,. We denote the

corresponding>?-eigenspace;, (D?) = spar{ll/,f}j. For® € E,(D?), b # 0, the Dirac
operator is given by the Clifford multiplication withr2b:

D® =2xib- ®.

Let Ep+ (D) be the set of alv € E,(D?) with D¥ = +27|b|¥. Clearly, we get
Ey(D? = Ep (D) @ E;,_(D), i.e., a decomposition into eigenspacedflt is known
that the Dirac spectrum df” is symmetric for every possible spin structure (see [1]).
Analogously as in [2] we define projection operatérs : E,(D?) — Ep+(D) by

N 1 b
Fro =1+ —D|w=(1+i— )W
2 |b| |b]

SinceF¥ is surjective we obtain generators B (D)

o], == FXu] = (1:ti|Z—|> v, j=1..,2"2
Inthe casé = 0 € I'* + a. one getsEqg(D?) = Eo(D), and generators dig(D) are
given by®d! :=¢/, j=1,...,2"/2,
For b # 0 one obtains an isomorphish), (D) = E,_(D) by the following: choose
¢ € R” perpendicular td with |¢| = 1. Let M. : E,(D?) — E,(D?) denote the Clifford
multiplication withc. Then,M, and D anticommute:

M.D® = —DM.® for all ® € E(D?).

Therefore, M. : Ep+(D) — Epx(D). Now (M.)? = id implies thatM.. is an isomor-
phism. Consequently, dit&,+ (D)) = 32"/2].
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Next, we considedM = G\R" with spin structure given by : G — Spin(n), the general
case. Theorem 2.3 tells us thidtis covered by the flat torus” = I'\R" withI' = R"NG.
The spin structure off” is given bye|r : ' — Spin(n). The spinors orT"” satisfy the
equivariance condition (2) only f@r € ", in general they are not equivariant for gle G.
To find theG-equivariant spinors we define an actionr¢&;) on the spinors off’”. For
A € r(G) we choose € G with r(g) = A, and for a spino onT" we set

AV =¢g(g)Wog L.

One can show that by this one gets a welldefined action on the space of spirfdts on
Obviously, ther (G)-equivariant spinors off” correspond to the spinors a@.

Letas, ..., a, be abasis of" andaj, ... ,a; be the dual basis. For the sake of sim-
plicity we write a, instead otz .. Now, we caIcuIateACD-,’;i forbel +a,, b#0, j=
1,...,2"/2 For achose € G with r(g) = A, i.e.,g = (A, a), we get the following
lemma.

Lemma4.1. AdL, = exp(27i(Ab, a)) (1j: ﬁ) (s(g)\llib> .

Before we prove this lemma, it should be noted that the invariande af R" under
r(G) € SO(n) implies thatl"™* C R” is invariant under (G)* = r(G). From the fact that
A®], is aspinor or™ it follows thatAb € I'* + a,.

Proof. First we get for allk € R":
(wl{ ° g—l) (x) = exp2rifh, A"L(x — a)))o! = exp(—2ri(Ab, a)) W] (x).

Next, we only use the definitions

. . b .
ACDIJJi = e;"(g)dDii o gil =¢e(g) (1j: Im> \Il}*?’ o gfl

o1 _ .
= (u: pje@be(e) 1) e(@W)og .

Fromr = Ao¢ itfollows thats(g)be(g)_l = (Aoe(g))(b) = r(g)b = Ab. Furthermore,
A € SQO(n) implies that|/p| = |Ab|. Finally we get

; Ab . i
AD], = (l:l: m) (e(g) exp(—2mi(Ab, a))w,ﬁb) )

U
We can writeA®}, = F*exp(—2ri(Ab, a))e(g)W4,). Hence for alld € Epi(D)
we haveA® € Eapt(D). The following theorem is useful to compute the symmetric
component of the Dirac spectrum of Bieberbach manifolds.

Theorem 4.2. Suppose that fab € I'* + a., b # 0, 0ne hastr (G) = #r(G)b, i.e.,r (G)
acts on the(G)-orbit of b without fixed points. Consider

Vi= @& Ean(D?.
Aer(G)
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Then, the dimensions of the subspaces of V consisting of D-eigenspinors of M associated
to the eigenvalues2x|b| are given by

1
mult(£27 |b|, D|y) = ézln/z]'

Proof. Theorem 2.2 states thatG) is finite: r(G) = {A1, ..., A;} with k = #r(G).
As by assumption the poiniib, ... , Axb are pairwise distinct, the spacEgjb(Dz) are
mutually orthogonal. Therefor&, is a direct sum. We define
VEi= @ Epn(D).
Aer(G)

The action ofr(G) induces representationst : r(G) — GL(V*). Let x* denote
the associated characters. From Lemma 4.1 it follows tHatd) = tr(p=(A)) = O for
A € r(G), A # id. The subspace ab-eigenspinors is the space on whietG) acts
trivially. Hence,

multE27|bl, Dly) = (x*, 1) = —— (G) Yot = —x *(id) = —dim(vﬂE)
Aer(G)

k.2l

e
NII—\

O

Corollary 4.3. Assume the action of r(G) dm* + «, is free, then the spectrum of the Dirac
operator on M is symmetric

In the case ob = 0 € I'* + 4, the action ofA € r(G) is given by
AV = g(g)V¥ € Eo(D)
for everyW e Eo(D) = ¥, andg € r1(A) c G. The kernel of the Dirac operator d

is the subspace of(G)-invariant spinors irEq(D), its dimension is

dim(ker(D)) = ﬁ x(A),
Aer(G)

wherey denotes the character of the representati@n) — GL(Eq(D)).
5. Spectra in dimension 3
In the following we will use the preceding preparations to compute the Dirac spectrum

of three-dimensional Bieberbach manifolds.
Foras, az, az given in Theorem 2.8 we get the dual bagjsas, a3:

G2 aj =(0,0,1/H),a5 = (1/L,-T/SL 0),a3 = (0,1/S,0)
G3 at =(0,0,1/H), a5 = (1/L, (1/3+/3(1/L), 0), a} = (0, (2/3)v/3(1/L), 0)
G4 at = (0,0,1/H), a} = (1/L,0,0), a} = (0, 1/L, 0)

G6 aj = (0,0,1/H).a3 = (1/L.0,0), a3 = (0,1/5.0)
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We obtain distinct:, for the distinct spin structures given By € {+1} as in Theorem
3.3:

Spin structures ae
G2  S1e{xl}, =1 s5=1 %a; = (0,0, 1/2H)
= (1/2L, T/ZSL, 1/2H)
S1€ {1}, So=1, s3=-1 Tai + %ag = (0,1/2S, 1/2H)
§1e{xl}, s2=-1, s3=-1 1a; + 3ab + Saj
= (1/2L,1/2S — T/2SL 1/2H)
G3 &1 =1 1a; = (0,0,1/2H)
s1=—1 0=(0,0,0)
G4  S1e{+l}, =1 1a; =(0,0,1/2H)
81 €{£l), s2=-1 3a; +3a3+3a% = (1/2L,1/2L, 1/2H)
G5 8§ € {+1} 3a; = (0,0,1/2H)
G6 81,68, 83 € {1} with 818283 = 1 1ai+ 1a3 + 3a} = (1/2L,1/2S,1/2H)

We consider the case G6: fore I'* + a, one has #(G)b = 4 = #r(G). Therefore,
r(G) acts onl™* 4 a, without fixed points. We apply Corollary 4.3 and note that in this case
the spectrum is symmetric.

The computation of the Dirac spectra is done in three steps.

First, we investigate when the kernel Bf is non-trivial. Then we observe in which
cased™* + a, possesses some non-maxim@l)-orbits, i.e., orbits (G)b with #r(G)b <
#r(G). Theorem 4.2 tells us that only these orbits can have a contribution to the asymmetric
component of the spectrum 6. At last, we just have to count the maximal orbit§iA-a,
to get the symmetric component.

To determine the kernel @ we only have to observe the cases with 0'* +a,: these are
the flat torus with the trivial spin structure and G3 with the spin structure givén by—1.

In the second case the holonomyrigs) = {1, A, A%}, whereA is the (2/3)-rotation
around the-axis. As anr-preimage ofA we chooser = (A4, %al) (compare Theorem 2.8).
Then by Theorem 3.3,(«) = %(1+ V/3e1e2). Using the representation defined by (1) we
get

w217 g parpare (PP
==z . P =pA" ==\ _ 5 1)
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The associated character is given by
XD =2 x(A)=-1 and x(A%=-1

Hence, dintker(D)) = %(2 —1—1) =0, and we have shown the following theorem.

Theorem 5.1. The only Bieberbach manifolds of dimension 3 which are spin and on which
D has a non-trivial kernel for a suitable choice of the spin structure are flat tori.

Next, we will compute the asymmetric component of the Dirac spectrum. As for G6 the
spectrum ofD is symmetric it suffices to study the cases G2-G5 which are very similar:
r(G) is cyclic and consists of rotations around thaxis. Consequently, an orbitG)b is
maximal if and only ifb sits on thez-axis which means$ is of the formb = Ses, B € R.
ForI'* + a. possessing points on theaxis the only possibilities are¢ = 0 ora, = %af
We get the following lemma.

Lemma 5.2. Asymmetric D-spectra are only possible in the following eight cases

G2 S1e{£l), =1, 83=1
G3 81 € {£1)

G4 S1e{£l), =1

G5 81 € {£1)

Next, we will only consider these eight cases. k@ I'* +a, sitting on thez-axis,b # 0,
one hasAb = b for all A € r(G). Hence,Ep+ (D) = Eap+ (D), and by Lemma 4.1 one
gets representations® : r(G) — GL(E,+(D)) with characterg®. As dimg Ep+ (D) =
%2[3/2] = 1, we have representations of a cyclic group on a one-dimensional linear space.
Let the order of (G) be denoted by = #r(G), let A be a generator of(G) as in Theorem
2.8. The dimension of the subspace- 0f7)-equivariant spinors ik, (D) is

1k—1 1k—1
(5 1) =2 a7 Ah = 23 A 4)
=0 =0

We writeb = Bez with b € R\{0} and get a basis df,+ (D):

D), = <1i ié—|> Wi = fy(1£i-sgnB)es)o?,

where f;, denotes the maR® — C, x — exp(2ri(x, b)). Using (1) we get
®py = fo(o"Fi-sgn(p)o?) # 0.

Just like in Theorem 2.8 we take= (A, (1/k)a1) as anr-preimage ofd. By Lemma
4.1 it follows that

ADL, = exp(—27i(1/k)(b, a)) <1 + ié—|) e(a) V. 5)

For the representation given in (1) the actiongpf e and—e3 on X3 are the same.
Using Theorem 3.3 and settigg:= 27 /k we obtain
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b 1 . 2 . g 1
(1 + |m> e(a)V, = (LE£i-sgnB)es)ds (0052 + sin 2e1e2) vy

=(1+£i-sgnpB)es)és (cos% — singeg) \D,,l
— ? 4. in? i 1
=5 (cos2 +i-sgng) sin 2) (1£i-sgnBe3) V¥,

= 81 exp(i(¢/2) sgn(p)) (1 + .%) v,

= 81 exp(i(p/2) sgn(p)) dp .

Plugging this into (5) one getzacbii = S1exp(—2rwi(1/k)(b, a1)) - exp2ri(1/2k)
(:i:sgr(ﬂ)))@%i. In each case of Lemma 5.2 we can fiid> 0 with e3 = Haj, and thus
b = (BH)aj. Hence the character df is

xT(A) =681 exp(Zni% <—,3H + %sgr(ﬂH))) ) (6)

The nextlemma is a direct consequence of the geometric summation, and it will be useful
in the following computations.

Lemma5.3. Leté e C be a kth root ofl, £¥ = 1, then
}kis’: 1 ife=1
kz—o 0 othemwise

Theorem 5.4. Only in the eight cases of Lemma 5.2 the spectrum of D has an asymmet-
ric componentB. Let k = #r(G) denote the order of the holonomy. Then one gets for
G2,G3,G4,GHvith the spin structure given g = 1:

1 1
B= {Z”E (ku—i—E) 17 GZ}

for all 4 € Z the multiplicities are

1 1
mult|{ 27— ( k —-|,.D]) =2
(2r5 (ku+3).2)

If one chooses the spin structure givensipy= —1, one obtains

1 k41
B=12r= (kp+—— Zt,
(2 (e )]

and foru € Z the multiplicity is

1 k+1
mult( 27— (kp+ ——).D) =2
(e (0557 0)
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Proof. We only have to plug (6) into (4) and consider the distinct cases. We note that in all
cases except G3 withy = —1 one getd = (z + %)af with z € Z. For G3 withd; = —1

one can writeb = za;, wherez € Z, z # 0.

1. 81 = 1. Forb = (z + )ai,i.e. (BH) = z + 1 it follows from (6):

£(A) = ex (2 i}(— R n( +}>>>
XA =SP T\ TEmpF N3 ) ) )

We put

1
UZi = mult (:l:ZTL'I <Z + E) CII| s D|Vzi> ,  where Vot = E((z+l/2)a’{)i(D)'

Together with (4) Lemma 5.3 yields:

S [ XAy =1,
2 0 otherwise

Sincex*(A) = 1is equivalent to-z — 3 + 1sgn(z + 3) € kZ, we get forz > 0:

+ 1 if z=0 modk,
< 0 otherwise

_ 1 if z=-1 modk,
< 0 otherwise

andforz <0: v+={1 if z=-1 modk,

< 0 otherwise

~ _J1 if z=0 modk,
Y2 =10 otherwise

Consequently, only = uk andz = uk — 1, u € Z, make a contribution to the
spectrum. One gets the positive eigenvalues exactly from thogith z = pk and
z = —uk —1, u > 0, and the negative ones exactly freme= uk andz = —uk — 1 for
n < 0. Aslaj| = 1/H, the eigenvalues arer21/H)(uk + %), u € Z.Foru > 0the
multiplicities are:

2

wherezs = ku andzp = —ku — 1. In the same way one obtains the multiplicities 2 for
uw < 0.
2.81=-1.As8; = exp(Zni%), the character is given by

1 1
mult(ZnE(k,u+—),D>=v21+v2;=1+1=2,

£(A) = ex 2i1 Hils H k
X (A) = p<ﬂz(—(,3 ) Egr(ﬂ )+§))~

Hence,x*(A) = 1 & —(BH) £ 3sgnBH) + 3k = 0modk, then the following
computations are analogous as above. One has to observe that for G2,G4,G5 one has
(BH) € Z+ 3 and3k € Z, and for G3:(fH) € Zand3k = 1+ 3. O
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Now, the eta invariants are easily computed. It is clear that for symmetric spectra the eta
invariants vanish.

Lemma 5.5. Assume the spectrum has an asymmetric component of thé8ferrr (v +
a)lu € Z} with @ € (0,1) andr > 0 such that each eigenvalue I8 has the same
multiplicity A. Then the eta invariantis = A(1 — 2«).

Proof. For Re€z) >> 0 one gets for the eta function:

It(x, D
1= Y sgoy %P

|42
respegD)
A#£0
A 1 /(1 > 1
:ngr(k)—:A— <Z —Z )
pyer [A]2 re kzo(k—i—a)z kzo(k—i—l—oe)z

These two series are known as generalized zeta functions (see [11, p. 265ff.]). They
have meromorphic extensions dh without poles inz = 0. Let ¢(z,a) denote the
function defined by) 2 ,1/(k + «)® for Re(z) > 0. One gets for the extension:
£(0,a) = % —a.

Hence, the eta invariantig0) = A (% —a—3+@1- cx)). O

Theorem 5.4 tells us that only in the case of Lemma 5.2 an asymmetric comp®nent
occursB has the form asin Lemma5.5if one takes 27 (k/H) anda = 1/2k for§; = 1,
andr = 2x(k/H) anda = (k + 1)/2k in the caseS; = —1. This yields the following
theorem.

Theorem 5.6. The eta invariant of a three-dimensional oriented Bieberbach manifold is
zero except in the eight cases of Lembn2 for G2—G5with the spin structure given by

81 = 1the etainvariantisy = 2(1 — 1/k) = 2 — 2/k,and foré; = —1litisn =
21— (k+1D/k)=—-2/k.

It remains to determine the symmetric components of the spectra. So far, we have just
considered the points in* + a, sitting on thez-axis. All the other points belong to maximal
orbits. By Theorem 4.2 every maximal orbitG)b contributes the eigenvalues | and
—2r|b|, with multiplicity 1 = 32/2], respectively, to the spectrum. We have to count these
maximal orbits to obtain the following theorem.

Theorem5.7. LetM = G;\R® be a three-dimensional Bieberbach manifold as in Theorem
2.8.LetM carry the spin structure givendy 82, 83 € {+1}. Then the symmetric component
A of the Dirac spectrum is

A= {rg ok, l,m) eI},

where)ﬁm e Rand! c Z3 are to be chosen as follows
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G2.

G3.

G4.
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@ 61€{xl}, 6=1 d63=1:
I ={k,I,m)k,l,meZ m>1}U{k,[,m)k,leZ,]>1m=0},

x:kﬁmziZn/%<k+%>2+512+s—12(m—%1>2.

(b) s1e{+l), sp=-1, s3=1: I={k I mlkl,meZIl>0}
=2 (14 2) + 5 (1 2) 2 (-2 (1 2))]
(© S1ef{xl), S=1, 3=-1: I={k I, m)k,I,meZ m=>O0}
A= ﬂ:ZH\/% (k—i— %>2+ élZJr 5—12 ((m + %) - %l)z.

(d) Spe{l), S=-1, &=-1: I={kl,mlklmeZl>0}

ik —wor |2 ket 2+1 I 2+l T I i
im= =gz \"T2) T2\Mz) Te2\\"T2)"\'"2))"

@ d1=1: I={kI,mklmeZ,1>1m=0,...,1—1},

1 1\? 1 1
+ _ 2 2
)‘klm_izn\/_z <k+§> +ﬁl +ﬁ(l—2m).

b S1=-1: I={kI,mkimeZ1>1m=0,...,1—1}

1 1 1
+
)\,klm = iZN\/ﬁkz =+ ﬁlz —+ @(1 — 2m)2

@ d1e{£l}, s2=1: I={k,I.mkl,meZ>=1m=0,...,20 -1}

N 1 1\ 1, )

(b) 81e({£l), p=—1:
I={(k I, mlk,l,meZ1>1m=0,..., 20 —2}

N 1 1\? 1 1\? 1\2
)\.kImZﬂZZTE m k+§ +p l—é =+ m—l—i—z .
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G5.
S1e{x1): I={k I mkl,meZ1>1,m=0,...,1—1},
1 1\? 1 1
+ 2 2
G6.

81,80, 83 € (£ withdy - 8p-83=1: I ={(k,I,m)lk,l,m € Z,1 > 0,k > 0O},

N 1 1\? 1 1\? 1 1\2

For G3 the multiplicity for everykﬁm is given by

MUt D) = 2 #{(K, I/, m') € 1A%, =& ).

For all the other cases one has

mUIt()‘iEIm’ D) = #{(k/, l/’ m’) e I|)‘1§l’m’ = )‘ﬁm}-

Proof. We need concrete procedures to countthe maximal orbits. For G2—-G5 the holonomies
consist of rotations around theaxis. In these cases the orbits sitin planes which are parallel

to thex-y-plane. The following pictures illustrate how to find representing elements of the
orbits in these planes. They are marked by the filled circles.

m=]
m=1 m=0
m=0
G2a) G20)
=0 I=0

In the case G2(a) we take the system of representatives:
{buiml(k, 1, m) € I} with I as in the theorem

wherebm = (k + 3)a} + laj + ma.
For G2(c) we choose the representativgs = (k + 3)aj + a5 + (m + 3)a3, k. I, m €
Z,m > 0.
In the cases G2(b) one has to replatg ( + 1) and(m + ) by m to get suitabléym.
The case G2(d) is analogous. For these cases we choose the following representatives:

biim

GAa  (k+ 3aj +lay+ (m —Da keZ,l>1m=0,...,2-1
GAb) (k+3pai+(—Das+m—1+3a keZl>1m=0,..,2-2
G5 (k + 3)a; + las — ma; keZ,l>1m=0,...,01-1
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O-O—-O—-O—8
A v
O o

Gda)

For G3(a) one has the safié + a, as in the case of G5. Every maximdlGs)-orbit is
the disjoint union of two maximal(G3)-orbits. Therefore, we get the same spectrum as in
the case of G5, but the multiplicities are doubled. For G3(b) replagel) by k.

Again, the case G6 differs from the other cases: every maximal orbit consists of four
points which do not sit in a common plane. We take the representing elemgpts=
(k + $)at + (I + 3)as + (m + $)as withm € Z, k,1 > 0. O

6. Parallel spinors

The remaining section deals with parallel spinors.

Theorem 6.1. Let M be a three-dimensional compact connected spin manifold carrying a
non-zero parallel spinor. Then M is a flat torus

Proof. Friedrich showed in [6] that manifolds admitting non-vanishing parallel spinors are
Ricci flat. In the case of dimension 3 this implies flatness. ThereMris,Bieberbach. The
kernel of the Dirac operator is non-trivial since parallel spinors are harmonic. Applying
Theorem 5.1 finishes the proof. O

The last theorem gives a characterisation of flat tori in the class of Bieberbach manifolds.
Theorem 6.2. LetM = G\R" be a Bieberbach manifold carrying the induced orientation

and the spin structure associatedsdo G — Spin(n). If the kernel of the Dirac operator
has dimensio2["/?], M is a flat torus

Proof. A consequence of dimensiofi'#! is that ke(D) = ¥,.. Hence for allg € G,o €
3, we haves = ¢(g) - o. Since the representation of Spin on X, is faithful, it follows
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thate = 1. The conditiorr = A o ¢ for spin structures implies = 1. This means that
G = ker(r) is a lattice, andV is a torus. O
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