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Abstract

The Dirac spectra and the eta invariants of three-dimensional Bieberbach manifolds are computed.
Compact connected three-dimensional spin manifolds admitting parallel non-vanishing spinors are
identified as flat tori. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Bieberbach manifolds are flat connected compact manifolds. In this article we study the
spectrum of their Dirac operator.

At first, a review of Bieberbach’s theorems is given. One of them states that every Bieber-
bach manifoldM is covered by a flat torusT n. We will see that spinors onM correspond
to spinors onT n satisfying a certain equivariance condition (2). The Dirac eigenvalues
of M are contained in the Dirac spectrum ofT n, and in general the multiplicities of the
eigenvalues ofM are smaller than those ofT n. The Dirac spectrum of flat tori is well
known, it depends on the choice of the spin structure. This result is due to Friedrich ([7],
see also [1]). In order to calculate the eigenvalues on Bieberbach manifolds we lift the
eigenspinors to the universal coveringRn. By representation theory of finite groups we
get formulae for the multiplicities of the Dirac eigenvalues ofM. The method we use
is related to the one Bär applied to compute the Dirac spectra of spherical space forms
(see [2]).
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An explicit classification of three-dimensional orientable Bieberbach manifolds is avail-
able: there are only six distinct affine equivalence classes of such manifolds. For every case
there exist several distinct spin structures which are classified in Theorem 3.3. In Theorems
5.4 and 5.7 we compute the Dirac spectra for all these cases. Eigenvalue 0 occurs only
in the case of the flat torusT 3 with the trivial spin structure (see Theorem 5.1). Since the
asymmetric components of these Dirac spectra have very simple forms it is easy to compute
the eta invariants (Theorem 5.6).

An interesting observation can be made: there are examples of Bieberbach manifolds
(G2,G4) for which a change of spin structures causes another qualitative behaviour of
the Dirac spectrum. For some spin structures the spectrum is symmetric, for other spin
structures it possesses an asymmetric component. This also illustrates the dependence of
the eta invariants on the choice of the spin structure.

Section 6 is dedicated to parallel spinors. Two characterisations of flat tori are given: any
three-dimensional compact connected spin manifold carrying a non-zero parallel spinor is
a flat torus (Theorem 6.1). Ann-dimensional oriented Bieberbach manifold for which the
kernel of the Dirac operator has dimension 2[n/2] is isometric to a torus (Theorem 6.2).

2. Flat manifolds

It is well known that any flat complete manifoldM of dimensionn is isometric to
the quotientG\Rn, whereG is a suitable subgroup of the Euclidean motionsE(n) :=
O(n)nRn.

For every elementg ∈ E(n) there existA ∈ O(n) anda ∈ Rn such that for allx ∈ Rn

we havegx = Ax+ a, and we writeg = (A, a).
One defines homomorphismsr : E(n) → O(n) andt : Rn → E(n) by r(A, a) = A

andt (a) = (1, a). Obviouslyt is injective, therefore we may considerRn as a subgroup of
E(n), the pure translations.

The subgroupr(G) ⊂ O(n) is called theholonomyof G since it is isomorphic to the
holonomy ofM (see [5]).

A general result on the holonomy group of connected Riemannian manifolds states that
a manifold is orientable if and only if its holonomy consists of isometries preserving the
orientation of a given tangent space (see [10, p. 123]). So we get the following lemma.

Lemma 2.1. A flat manifoldM = G\Rn is orientable iffr(G) ⊂ SO(n).

Now we take a look at Bieberbach manifolds: a subgroupG ⊂ E(n) acting properly dis-
continuously onRn such thatG\Rn is compact is called aBieberbach group. The structure
of Bieberbach groups is described by the following theorem.

Theorem 2.2(Bieberbach).Let G be a Bieberbach group. Then the holonomy r(G) is finite
and the set or pure translations in G defined as0 := G ∩ Rn is a lattice.

From the proof given in [5, p. 17ff.] also two other things follow: the action ofr(G) on
R

n leaves0 invariant, i.e.,r(G) acts on0. Moreover, one has a short exact sequence 0→
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0 → G → r(G) → 1. Hence0 = ker(r) is a normal subgroup ofG with r(G) ∼= G/0.
This implies the following.

Theorem 2.3(Bieberbach, [3]).Every Bieberbach manifold is normally covered by a flat
torus, and the covering map is a local isometry.

The flat torus isT n := 0\Rn, and the action ofA ∈ r(G) on T n is given as follows:
chooseg ∈ G with r(g) = A and setA · [x]0 := [gx]0. Thus we getMn ∼= r(G)\T n.

Bieberbach manifolds are well described by their fundamental groups as we see next.

Proposition 2.4. Let G1, G2 ⊂ E(n) be Bieberbach groups, letϕ : G1 → G2 be an
isomorphism. Then there is an affine transformationα ∈ GL(n) n Rn such that for all
g ∈ G1: ϕ(g) = αgα−1.

Proof. See [5, p. 19]. �

We call two Bieberbach manifoldsM1 andM2 affine equivalentif there exists a diffeomor-
phismF : M1 → M2 whose lift to the universal Riemannian coveringsπ1 : Rn → M1,
π2 : Rn → M2 is an affine linear mapα : Rn → R

n such that the following diagram
commutes:

A consequence of Proposition 2.4 is the following theorem.

Theorem 2.5(Bieberbach).Two Bieberbach manifolds are affine equivalent if their fun-
damental groups are isomorphic.

The next theorem states that in principle one should be able to classify Bieberbach
manifolds of a given dimension.

Theorem 2.6 (Bieberbach, [4]).Let n be a positive integer. Then the number of affine
equivalence classes of n-dimensional Bieberbach manifolds is finite.

Proof. See [5, p. 65]. �
In the case of dimensionn ≤ 3 there are explicit classifications. Since we will do spin
geometry we are interested in orientable Bieberbach manifolds only. In dimension 1 and 2
the only orientable Bieberbach manifolds are flat tori (see [12, p. 77]). In dimension 3 the
classification is a bit more interesting.

Theorem 2.7 (Hantzsche, Wendt).Let M be an orientable Bieberbach manifold of di-
mension three. Then M is affine equivalent toGi\R3 whereGi is one of the following six
groups. In every case a basis of the latticeR3∩Gi is denoted by{a1, a2, a3}, the translation
associated toaj is calledtj , j = 1, 2, 3.
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Generators ofGi Defining relations

G1 t1, t2, t3

with {a1, a2, a3} any basis ofR3
tl tk = tktl∀k, l

G2 t1, t2, t3, α

with a1 ∈ [a2, a3]⊥, α = (A, 1
2a1),

where Aa1 = a1,Aa2 = −a2,Aa3 =
−a3

tl tk = tktl∀k, l, α2 = t1,
αt2α

−1 = t−1
2 , αt3α

−1 = t−1
3

G3 t1, t2, t3, α

with a1 ∈ [a2, a3]⊥, |a2| = |a3|,
a2 and a3 generate a plane regu-
lar hexagonal lattice, α = (A, 1

3a1),
where Aa1 = a1, Aa2 = a3, Aa3 =
−a2 − a3

tl tk = tktl∀k, l, α3 = t1,
αt2α

−1 = t3, αt3α
−1 =

t−1
2 t−1

3

G4 t1, t2, t3, α

with a1, a2, a3 mutually orthogonal,
|a2| = |a3|, α = (A, 1

4a1), where
Aa1 = a1, Aa2 = a3, Aa3 = −a2

tl tk = tktl∀k, l, α4 = t1,
αt2α

−1 = t3, αt3α
−1 = t−1

2

G5 t1, t2, t3, α

with a1 ∈ [a2, a3]⊥, |a2| = |a3|,
a2 and a3 generate a plane regu-
lar hexagonal lattice, α = (A, 1

6a1),
where Aa1 = a1, Aa2 = a3, Aa3 =
−a2 + a3

tl tk = tktl∀k, l, α6 = t1,
αt2α

−1 = t3, αt3α
−1 = t−1

2 t3

G6 t1, t2, t3, α, β, γ

with a1, a2, a3 mutually orthogonal,

α = (A, 1
2a1), β = (B, 1

2a2 + 1
2a3),

γ = (C, 1
2a1 + 1

2a2 + 1
2a3), where

Aa1 = a1, Aa2 = −a2, Aa3 = −a3,

Ba1 = −a1, Ba2 = a2, Ba3 = −a3,

Ca1 = −a1, Ca2 = −a2, Ca3 = a3

tl tk = tktl∀k, l, α2 = t1,
αt2α

−1 = t−1
2 , αt3α

−1 =
t−1
3 , βt1β

−1 = t−1
1 , β2 =

t2, βt3β
−1 = t−1

3 , γ t1γ
−1 =

t−1
1 , γ t2γ

−1 = t−1
2 , γ 2 = t3,

γβα = t1t3

Proof. The generators and relations are given in [12, p. 117]. In [9] it is shown that these
are the defining relations. �

The affine equivalence classes are denoted by G1, . . . , G6, the associated Bieberbach
groups are called G1, . . . , G6. With some additional elementary considerations one gets
the following theorem.

Theorem 2.8. Every orientable Bieberbach manifold of dimension three is isometric to
Gi\R3, whereGi is one of the following groups, the parameters are to be chosen suitably.



F. Pfäffle / Journal of Geometry and Physics 35 (2000) 367–385 371

Generators ofGi Basis of lattice Parameters

G1 t1, t2, t3 a1, a2, a3 any
basis ofR3

G2 t1, t2, t3, α

with α =
(A, 1

2a1)

a1 = (0, 0, H),
a2 = (L, 0, 0),
a3 = (T , S, 0)

A π -rotation
aboutz-axis

H, L, S >

0,T ∈ R

G3 t1, t2, t3, α

with α =
(A, 1

3a1)

a1 = (0, 0, H),
a2 = (L, 0, 0),
a3 =
(−1

2L, (
√

3/2)L, 0)

A 2π
3 -rotation

aboutz-axis
H, L > 0

G4 t1, t2, t3, α

with α =
(A, 1

4a1)

a1 = (0, 0, H),
a2 = (L, 0, 0),
a3 = (0, L, 0)

A π
2 -rotation

aboutz-axis
H, L > 0

G5 t1, t2, t3, α

with α =
(A, 1

6a1)

a1 = (0, 0, H),
a2 = (L, 0, 0),
a3 =
(1

2L, (
√

3/2)L, 0)

A π
3 -rotation

aboutz-axis
H, L > 0

G6 t1, t2, t3, α, β, γ with
α = (A, 1

2a1), β =
(B, 1

2a2 + 1
2a3), γ =

(C, 1
2a1+ 1

2a2+ 1
2a3)

a1 = (0, 0, H),
a2 = (L, 0, 0),
a3 = (0, S, 0)

A π -rotation
about z-axis,
B π -rotation
about x-axis,
C π -rotation
abouty-axis

H, L, S > 0

In particular the holonomyr(Gi) is cyclic fori = 2, . . . , 5.

3. Spin structures

Let Cl(n) denote the Clifford algebra ofRn, i.e., the complex algebra generated byRn

with the relationsv ·w +w · v +2〈v, w〉 = 0 for all v, w ∈ Rn. The space of an irreducible
representation ofCl(n) is 6n = CK with K = 2[n/2]. Forn = 3 the representation can be
given by the Pauli matrices (see [8]):

e1 =
(

i 0

0 −i

)
, e2 =

(
0 i

i 0

)
, e3 =

(
0 1
−1 0

)
. (1)

The group Spin(n) sits inCl(n):

Spin(n) = {v1 · · · v2k| k ∈ N, |vi | = 1 for all i = 1, . . . , 2k},
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and there is the double covering

λ : Spin(n) → SO(n), u 7→ (v 7→ u · v · u−1).

Next, we describe the spin structures on an oriented Bieberbach manifoldM = G\Rn.
We proceed as in [8]. SinceRn is simply connected it carries only one spin structure — the
trivial one:

wherePSOR
n denotes the set of all oriented orthonormal bases of tangent spaces ofR

n.
The action ofG onPSOR

n is given by

g(x, (v1, . . . vn)) = (gx, (dg(v1), . . . , dg(vn))) = (gx, r(g)(v1, . . . , vn))

for all x ∈ Rn, (v1, . . . , vn) ∈ SO(n). We getPSOM ∼= G\PSOR
n. Now there are two lifts

g± of g such that

Proposition 3.1. There is aone-to-onecorrespondence between the spin structures on M
and the actionsα of G onPSpinR

n with: α(g) ∈ {g±} for all g ∈ G.

Proof. See [8, p. 46]. �

The spin structure associated to such anα is given by

G\PSpinR
n → G\PSOR

n ∼= PSOM.

Forg± we can findA± ∈ λ−1(r−1(g)) such that for all(x, s) ∈ Rn × Spin(n),

g± = (gx, A±s).

From Proposition 3.1 one gets the following proposition.

Proposition 3.2. The spin structures onM = G\Rn with the induced orientation are in
bijective relation to the homomorphismsε : G → Spin(n) with
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Given a homomorphismε with r = λ ◦ ε one defines an actionα onRn × Spin(n) via
α(g)(x, s) = (gx, ε(g)s), and one gets a spin structure as described above.

In order to classify the spin structures on oriented Bieberbach manifolds of dimension 3
we have to recall a simple fact concerning groups: let a groupG be given by generators and
relations, letε be a map from the set of the generators ofG into a groupH . Thenε extends
to a homomorphismG → H if and only if the same relations hold for theε-images of the
generators. Considering theλ-preimages ofr(g) for every generatorg of G and checking
the relations we get the following theorem.

Theorem 3.3. LetGi ⊂ SO(3)nRn be a Bieberbach group as in Theorem2.8.Then one
gets every spin structure onM = Gi\R3 by taking one of the homomorphismsε : Gi →
Spin(3) with r = λ ◦ ε whose values on the generators ofGi are given by the following:

G1 a1 7→ δ1, a2 7→
δ2, a3 7→ δ3

δ1, δ2, δ3 ∈ {±1}

G2 a1 7→ −1, a2 7→
δ2, a3 7→ δ3, α 7→
δ1e1e2

δ1, δ2, δ3 ∈ {±1}

G3 a1 7→ −δ1, a2 7→
1, a3 7→ 1, α 7→
δ1(

1
2 + (

√
3/2)e1e2)

δ1 ∈ {±1}

G4 a1 7→ −1, a2 7→
δ2, a3 7→ δ2,
α 7→ δ1(

√
2/2 +

(
√

2/2)e1e2)

δ1, δ2 ∈ {±1}

G5 a1 7→ −1, a2 7→
1, a3 7→ 1, α 7→
δ1(

√
3/2 + 1

2e1e2)

δ1 ∈ {±1}

G6 a1 7→ −1, a2 7→
−1, a3 7→ −1, α 7→
δ1e1e2, β 7→ δ2e2e3, γ 7→
δ3e3e1

δ1, δ2, δ3 ∈ {±1}
with δ1 · δ2 · δ3 = 1

In particular, in the casesG1andG2 there are eight distinct spin structures, forG3and
G5 there are two, and forG4andG6 there are four.

In the cases G2–G5 one can writeε(α) alternatively asε(α) = δ1(cos(ϕ/2) + sin(ϕ/2)

e1e2) with ϕ = 2π/k andk = #r(Gi).

4. Spectra

Now, letM = G\Rn be a Bieberbach manifold with the spin structure given byε : G →
Spin(n). The spinor bundle ofM is the associated bundle6M := PSpinM ×Spin(n) 6n. For
R

n it is trivial: 6Rn ∼= Rn × 6n.
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We may identify6M = G\6Rn, whereg ∈ G acts on6Rn by g(x, σ ) = (gx, ε(g)σ )

for all (x, σ ) ∈ 6Rn. Therefore, one can consider spinors onM as maps9 : Rn → 6n

satisfying for allg ∈ G:

9 = ε(g)9 ◦ g−1. (2)

Let ∇ denote the Levi-Civita connection for spinors, and letD be the Dirac operator
onM.

ForT n = 0\Rn the spectrum ofD2 is already known (see [7]): let the spin structure of
T n be given byε : 0 → {±1} ⊂ Spin(n), let a∗

1, . . . , a∗
n be a basis of the dual lattice0∗

of 0. We define

aε := 1

2

∑
l with ε(al)=−1

a∗
l . (3)

TheD2-eigenspinors onT n are given by

9
j
b : Rn → 6n, x 7→ exp(2π i〈b, x〉)σ j ,

whereb ∈ 0∗ + aε, and{σ j | j = 1, . . . , 2[n/2]} is the standard basis of6n. We denote the
correspondingD2-eigenspaceEb(D

2) := span{9j
b }j . For8 ∈ Eb(D

2), b 6= 0, the Dirac
operator is given by the Clifford multiplication with 2π ib:

D8 = 2π ib · 8.

Let Eb±(D) be the set of all9 ∈ Eb(D
2) with D9 = ±2π |b|9. Clearly, we get

Eb(D
2) = Eb+(D) ⊕ Eb−(D), i.e., a decomposition into eigenspaces ofD. It is known

that the Dirac spectrum ofT n is symmetric for every possible spin structure (see [1]).
Analogously as in [2] we define projection operatorsF± : Eb(D

2) → Eb±(D) by

F±9 :=
(

1 ± 1

2π |b|D
)

9 =
(

1 ± i
b

|b|
)

9.

SinceF± is surjective we obtain generators ofEb±(D)

8
j
b± := F±9

j
b =

(
1 ± i

b

|b|
)

9
j
b , j = 1, . . . , 2[n/2].

In the caseb = 0 ∈ 0∗ + aε one getsE0(D
2) = E0(D), and generators ofE0(D) are

given by8
j

0 := σ j , j = 1, . . . , 2[n/2].
For b 6= 0 one obtains an isomorphismEb+(D) ∼= Eb−(D) by the following: choose

c ∈ Rn perpendicular tob with |c| = 1. LetMc : Eb(D
2) → Eb(D

2) denote the Clifford
multiplication withc. Then,Mc andD anticommute:

McD8 = −DMc8 for all 8 ∈ Eb(D
2).

Therefore,Mc : Eb±(D) → Eb∓(D). Now (Mc)
2 = id implies thatMc is an isomor-

phism. Consequently, dim(Eb±(D)) = 1
22[n/2].
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Next, we considerM = G\Rn with spin structure given byε : G → Spin(n), the general
case. Theorem 2.3 tells us thatM is covered by the flat torusT n = 0\Rn with 0 = Rn ∩G.
The spin structure onT n is given byε|0 : 0 → Spin(n). The spinors onT n satisfy the
equivariance condition (2) only forg ∈ 0, in general they are not equivariant for allg ∈ G.
To find theG-equivariant spinors we define an action ofr(G) on the spinors onT n. For
A ∈ r(G) we chooseg ∈ G with r(g) = A, and for a spinor9 onT n we set

A9 := ε(g)9 ◦ g−1.

One can show that by this one gets a welldefined action on the space of spinors onT n.
Obviously, ther(G)-equivariant spinors onT n correspond to the spinors onM.

Let a1, . . . , an be a basis of0 anda∗
1, . . . , a∗

n be the dual basis. For the sake of sim-

plicity we writeaε instead ofaε|0 . Now, we calculateA8
j
b± for b ∈ 0∗ + aε, b 6= 0, j =

1, . . . , 2[n/2]. For a choseng ∈ G with r(g) = A, i.e.,g = (A, a), we get the following
lemma.

Lemma 4.1. A8
j
b± = exp(2π i〈Ab, a〉)

(
1 ± Ab

|Ab|
) (

ε(g)9
j

Ab

)
.

Before we prove this lemma, it should be noted that the invariance of0 ⊂ Rn under
r(G) ⊂ SO(n) implies that0∗ ⊂ Rn is invariant underr(G)∗ = r(G). From the fact that
A8

j
b± is a spinor onT n it follows thatAb ∈ 0∗ + aε.

Proof. First we get for allx ∈ Rn:(
9

j
b ◦ g−1

)
(x) = exp(2π i〈b, A−1(x − a)〉)σ j = exp(−2π i〈Ab, a〉)9j

Ab(x).

Next, we only use the definitions

A8
j
b± = ε(g)8

j
b± ◦ g−1 = ε(g)

(
1 ± i

b

|b|
)

9
j
b ◦ g−1

=
(

1 ± i
1

|b|ε(g)bε(g)−1
)

ε(g)9
j
b ◦ g−1.

Fromr = λ◦ε it follows thatε(g)bε(g)−1 = (λ◦ε(g))(b) = r(g)b = Ab. Furthermore,
A ∈ SO(n) implies that|b| = |Ab|. Finally we get

A8
j
b± =

(
1 ± Ab

|Ab|
)(

ε(g) exp(−2π i〈Ab, a〉)9j

Ab

)
.

�
We can writeA8

j
b± = F± exp(−2π i〈Ab, a〉)ε(g)9

j

Ab). Hence for all8 ∈ Eb±(D)

we haveA8 ∈ EAb±(D). The following theorem is useful to compute the symmetric
component of the Dirac spectrum of Bieberbach manifolds.

Theorem 4.2. Suppose that forb ∈ 0∗ + aε, b 6= 0, one has#r(G) = #r(G)b, i.e.,r(G)

acts on ther(G)-orbit of b without fixed points. Consider

V := ⊕
A∈r(G)

EAb(D
2).
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Then, the dimensions of the subspaces of V consisting of D-eigenspinors of M associated
to the eigenvalues±2π |b| are given by

mult(±2π |b|, D|V ) = 1

2
2[n/2].

Proof. Theorem 2.2 states thatr(G) is finite: r(G) = {A1, . . . , Ak} with k = #r(G).
As by assumption the pointsA1b, . . . , Akb are pairwise distinct, the spacesEAj b(D

2) are
mutually orthogonal. Therefore,V is a direct sum. We define

V ± := ⊕
A∈r(G)

EAb±(D).

The action ofr(G) induces representationsρ± : r(G) → GL(V ±). Let χ± denote
the associated characters. From Lemma 4.1 it follows thatχ±(A) = tr(ρ±(A)) = 0 for
A ∈ r(G), A 6= id. The subspace ofD-eigenspinors is the space on whichr(G) acts
trivially. Hence,

mult(±2π |b|, D|V ) = 〈χ±, 1〉 = 1

#r(G)

∑
A∈r(G)

χ±(A) = 1

k
χ±(id) = 1

k
dim(V ±)

= 1

k
· 1

2
· k · 2[n/2].

�

Corollary 4.3. Assume the action of r(G) on0∗ +aε is free, then the spectrum of the Dirac
operator on M is symmetric.

In the case ofb = 0 ∈ 0∗ + aε the action ofA ∈ r(G) is given by

A9 = ε(g)9 ∈ E0(D)

for every9 ∈ E0(D) = 6n andg ∈ r−1(A) ⊂ G. The kernel of the Dirac operator onM
is the subspace ofr(G)-invariant spinors inE0(D), its dimension is

dim(ker(D)) = 1

#r(G)

∑
A∈r(G)

χ(A),

whereχ denotes the character of the representationr(G) → GL(E0(D)).

5. Spectra in dimension 3

In the following we will use the preceding preparations to compute the Dirac spectrum
of three-dimensional Bieberbach manifolds.

Fora1, a2, a3 given in Theorem 2.8 we get the dual basisa∗
1, a∗

2, a∗
3:

G2 a∗
1 = (0, 0, 1/H), a∗

2 = (1/L, −T/SL, 0), a∗
3 = (0, 1/S, 0)

G3 a∗
1 = (0, 0, 1/H), a∗

2 = (1/L, (1/3)
√

3(1/L), 0), a∗
3 = (0, (2/3)

√
3(1/L), 0)

G4 a∗
1 = (0, 0, 1/H), a∗

2 = (1/L, 0, 0), a∗
3 = (0, 1/L, 0)

G6 a∗
1 = (0, 0, 1/H), a∗

2 = (1/L, 0, 0), a∗
3 = (0, 1/S, 0)
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We obtain distinctaε for the distinct spin structures given byδi ∈ {±1} as in Theorem
3.3:

Spin structures aε

G2 δ1 ∈ {±1}, δ2 = 1, δ3 = 1 1
2a∗

1 = (0, 0, 1/2H)

δ1 ∈ {±1}, δ2 = −1, δ3 = 1 1
2a∗

1 + 1
2a∗

2

= (1/2L, −T/2SL, 1/2H)

δ1 ∈ {±1}, δ2 = 1, δ3 = −1 1
2a∗

1 + 1
2a∗

3 = (0, 1/2S, 1/2H)

δ1 ∈ {±1}, δ2 = −1, δ3 = −1 1
2a∗

1 + 1
2a∗

2 + 1
2a∗

3

= (1/2L, 1/2S − T/2SL, 1/2H)

G3 δ1 = 1 1
2a∗

1 = (0, 0, 1/2H)

δ1 = −1 0 = (0, 0, 0)

G4 δ1 ∈ {±1}, δ2 = 1 1
2a∗

1 = (0, 0, 1/2H)

δ1 ∈ {±1}, δ2 = −1 1
2a∗

1 + 1
2a∗

2 + 1
2a∗

3 = (1/2L, 1/2L, 1/2H)

G5 δ1 ∈ {±1} 1
2a∗

1 = (0, 0, 1/2H)

G6 δ1, δ2, δ3 ∈ {±1} with δ1δ2δ3 = 1 1
2a∗

1 + 1
2a∗

2 + 1
2a∗

3 = (1/2L, 1/2S, 1/2H)

We consider the case G6: forb ∈ 0∗ + aε one has #r(G)b = 4 = #r(G). Therefore,
r(G) acts on0∗ +aε without fixed points. We apply Corollary 4.3 and note that in this case
the spectrum is symmetric.

The computation of the Dirac spectra is done in three steps.
First, we investigate when the kernel ofD is non-trivial. Then we observe in which

cases0∗ + aε possesses some non-maximalr(G)-orbits, i.e., orbitsr(G)b with #r(G)b <

#r(G). Theorem 4.2 tells us that only these orbits can have a contribution to the asymmetric
component of the spectrum ofD. At last, we just have to count the maximal orbits in0+aε

to get the symmetric component.
To determine the kernel ofD we only have to observe the cases with 0∈ 0∗+aε: these are

the flat torus with the trivial spin structure and G3 with the spin structure given byδ1 = −1.
In the second case the holonomy isr(G) = {1, A, A2}, whereA is the(2π/3)-rotation
around thez-axis. As anr-preimage ofA we chooseα = (A, 1

3a1) (compare Theorem 2.8).
Then by Theorem 3.3,ε(α) = 1

2(1 + √
3e1e2). Using the representation defined by (1) we

get

ρ(A) = −1

2

(
1 −√

3
√

3 1

)
and ρ(A2) = ρ(A)2 = −1

2

(
1

√
3

−√
3 1

)
.
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The associated character is given by

χ(1) = 2, χ(A) = −1 and χ(A2) = −1.

Hence, dim(ker(D)) = 1
3(2 − 1 − 1) = 0, and we have shown the following theorem.

Theorem 5.1. The only Bieberbach manifolds of dimension 3 which are spin and on which
D has a non-trivial kernel for a suitable choice of the spin structure are flat tori.

Next, we will compute the asymmetric component of the Dirac spectrum. As for G6 the
spectrum ofD is symmetric it suffices to study the cases G2–G5 which are very similar:
r(G) is cyclic and consists of rotations around thez-axis. Consequently, an orbitr(G)b is
maximal if and only ifb sits on thez-axis which meansb is of the formb = βe3, β ∈ R.
For0∗ + aε possessing points on thez-axis the only possibilities areaε = 0 oraε = 1

2a∗
1.

We get the following lemma.

Lemma 5.2. Asymmetric D-spectra are only possible in the following eight cases:

G2 δ1 ∈ {±1}, δ2 = 1, δ3 = 1
G3 δ1 ∈ {±1}
G4 δ1 ∈ {±1}, δ2 = 1
G5 δ1 ∈ {±1}

Next, we will only consider these eight cases. Forb ∈ 0∗+aε sitting on thez-axis,b 6= 0,
one hasAb = b for all A ∈ r(G). Hence,Eb±(D) = EAb±(D), and by Lemma 4.1 one
gets representationsρ± : r(G) → GL(Eb±(D)) with charactersχ±. As dimC Eb±(D) =
1
22[3/2] = 1, we have representations of a cyclic group on a one-dimensional linear space.
Let the order ofr(G) be denoted byk = #r(G), letA be a generator ofr(G) as in Theorem
2.8. The dimension of the subspace ofr(G)-equivariant spinors inEb±(D) is

〈χ±, 1〉 = 1

k

k−1∑
l=0

χ±(Al) = 1

k

k−1∑
l=0

(χ±(A))l. (4)

We writeb = βe3 with b ∈ R\{0} and get a basis ofEb±(D):

81
b± =

(
1 ± i

b

|b|
)

91
b = fb(1 ± i · sgn(β)e3)σ

1,

wherefb denotes the mapR3 → C, x 7→ exp(2π i〈x, b〉). Using (1) we get

81
b± = fb(σ

1 ∓ i · sgn(β)σ 2) 6= 0.

Just like in Theorem 2.8 we takeα = (A, (1/k)a1) as anr-preimage ofA. By Lemma
4.1 it follows that

A81
b± = exp(−2π i(1/k)〈b, a〉)

(
1 ± i

b

|b|
)

ε(a)91
b . (5)

For the representation given in (1) the actions ofe1 · e2 and−e3 on 63 are the same.
Using Theorem 3.3 and settingϕ := 2π/k we obtain
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1 ± i

b

|b|
)

ε(a)91
b = (1 ± i · sgn(β)e3)δ1

(
cos

ϕ

2
+ sin

ϕ

2
e1e2

)
91

b

= (1 ± i · sgn(β)e3)δ1

(
cos

ϕ

2
− sin

ϕ

2
e3

)
91

b

= δ1

(
cos

ϕ

2
± i · sgn(β) sin

ϕ

2

)
(1 ± i · sgn(β)e3)9

1
b

= δ1 exp(±i(ϕ/2) sgn(β))

(
1 ± i

b

|b|
)

91
b

= δ1 exp(±i(ϕ/2) sgn(β))81
b±.

Plugging this into (5) one getsA81
b± = δ1 exp(−2π i(1/k)〈b, a1〉) · exp(2π i(1/2k)

(±sgn(β)))81
b±. In each case of Lemma 5.2 we can findH > 0 with e3 = Ha∗

1, and thus
b = (βH)a∗

1. Hence the character ofA is

χ±(A) = δ1 exp

(
2π i

1

k

(
−βH ± 1

2
sgn(βH)

))
. (6)

The next lemma is a direct consequence of the geometric summation, and it will be useful
in the following computations.

Lemma 5.3. Let ξ ∈ C be a kth root of1, ξk = 1, then

1

k

k−1∑
l=0

ξ l =
{

1 if ξ = 1,

0 otherwise.

Theorem 5.4. Only in the eight cases of Lemma 5.2 the spectrum of D has an asymmet-
ric componentB. Let k = #r(G) denote the order of the holonomy. Then one gets for
G2,G3,G4,G5with the spin structure given byδ1 = 1:

B =
{

2π
1

H

(
kµ + 1

2

)
|µ ∈ Z

}

for all µ ∈ Z the multiplicities are

mult

(
2π

1

H

(
kµ + 1

2

)
, D

)
= 2.

If one chooses the spin structure given byδ1 = −1, one obtains

B =
{

2π
1

H

(
kµ + k + 1

2

)
|µ ∈ Z

}
,

and forµ ∈ Z the multiplicity is

mult

(
2π

1

H

(
kµ + k + 1

2

)
, D

)
= 2
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Proof. We only have to plug (6) into (4) and consider the distinct cases. We note that in all
cases except G3 withδ1 = −1 one getsb = (z + 1

2)a∗
1 with z ∈ Z. For G3 withδ1 = −1

one can writeb = za∗
1, wherez ∈ Z, z 6= 0.

1. δ1 = 1. Forb = (z + 1
2)a∗

1, i.e.(βH) = z + 1
2 it follows from (6):

χ±(A) = exp

(
2π i

1

k

(
−z − 1

2
± 1

2
sgn

(
z + 1

2

)))
.

We put

ν±
z := mult

(
±2π |

(
z + 1

2

)
a∗

1| , D|Vz±

)
, where Vz± := E((z+1/2)a∗

1)±(D).

Together with (4) Lemma 5.3 yields:

ν±
z =

{
1 if χ±(A) = 1,

0 otherwise.

Sinceχ±(A) = 1 is equivalent to−z − 1
2 ± 1

2sgn(z + 1
2) ∈ kZ, we get forz ≥ 0:

ν+
z =

{
1 if z ≡ 0 modk,

0 otherwise,

ν−
z =

{
1 if z ≡ −1 modk,

0 otherwise,

and forz < 0 : ν+
z =

{
1 if z ≡ −1 mod k,

0 otherwise,

ν−
z =

{
1 if z ≡ 0 modk,

0 otherwise.

Consequently, onlyz = µk andz = µk − 1, µ ∈ Z, make a contribution to the
spectrum. One gets the positive eigenvalues exactly from thosez with z = µk and
z = −µk − 1, µ ≥ 0, and the negative ones exactly fromz = µk andz = −µk − 1 for
µ < 0. As |a∗

1| = 1/H , the eigenvalues are 2π(1/H)(µk + 1
2), µ ∈ Z. Forµ ≥ 0 the

multiplicities are:

mult

(
2π

1

H

(
kµ + 1

2

)
, D

)
= ν+

z1
+ ν+

z2
= 1 + 1 = 2,

wherez1 = kµ andz2 = −kµ − 1. In the same way one obtains the multiplicities 2 for
µ < 0.

2. δ1 = −1. Asδ1 = exp(2π i 1
2), the character is given by

χ±(A) = exp

(
2π i

1

k

(
−(βH) ± 1

2
sgn(βH) + k

2

))
.

Hence,χ±(A) = 1 ⇔ −(βH) ± 1
2sgn(βH) + 1

2k ≡ 0 modk, then the following
computations are analogous as above. One has to observe that for G2,G4,G5 one has
(βH) ∈ Z+ 1

2 and 1
2k ∈ Z, and for G3:(βH) ∈ Z and 1

2k = 1 + 1
2. �
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Now, the eta invariants are easily computed. It is clear that for symmetric spectra the eta
invariants vanish.

Lemma 5.5. Assume the spectrum has an asymmetric component of the formB = {r(µ +
α)|µ ∈ Z} with α ∈ (0, 1) and r > 0 such that each eigenvalue inB has the same
multiplicity A. Then the eta invariant isη = A(1 − 2α).

Proof. For Re(z) � 0 one gets for the eta function:

η(z) =
∑

λ∈spec(D)

λ6=0

sgn(λ)
mult(λ, D)

|λ|z

=
∑
λ∈B

sgn(λ)
A

|λ|z = A
1

rz

( ∞∑
k=0

1

(k + α)z
−

∞∑
k=0

1

(k + 1 − α)z

)
.

These two series are known as generalized zeta functions (see [11, p. 265ff.]). They
have meromorphic extensions onC without poles inz = 0. Let ζ(z, a) denote the
function defined by

∑∞
k=01/(k + α)z for Re(z) � 0. One gets for the extension:

ζ(0, a) = 1
2 − α.

Hence, the eta invariant isη(0) = A
(

1
2 − α − 1

2 + (1 − α)
)
. �

Theorem 5.4 tells us that only in the case of Lemma 5.2 an asymmetric componentB
occurs,B has the form as in Lemma 5.5 if one takesr = 2π(k/H) andα = 1/2k for δ1 = 1,
andr = 2π(k/H) andα = (k + 1)/2k in the caseδ1 = −1. This yields the following
theorem.

Theorem 5.6. The eta invariant of a three-dimensional oriented Bieberbach manifold is
zero except in the eight cases of Lemma5.2: for G2–G5with the spin structure given by
δ1 = 1 the eta invariant isη = 2(1 − 1/k) = 2 − 2/k, and for δ1 = −1 it is η =
2(1 − (k + 1)/k) = −2/k.

It remains to determine the symmetric components of the spectra. So far, we have just
considered the points in0∗ +aε sitting on thez-axis. All the other points belong to maximal
orbits. By Theorem 4.2 every maximal orbitr(G)b contributes the eigenvalues 2π |b| and
−2π |b|, with multiplicity 1 = 1

22[3/2], respectively, to the spectrum. We have to count these
maximal orbits to obtain the following theorem.

Theorem 5.7. LetM = Gi\R3 be a three-dimensional Bieberbach manifold as in Theorem
2.8. Let M carry the spin structure given byδ1, δ2, δ3 ∈ {±1}.Then the symmetric component
A of the Dirac spectrum is

A = {
λ±

klm|(k, l, m) ∈ I
}
,

whereλ±
klm ∈ R andI ⊂ Z3 are to be chosen as follows:



382 F. Pfäffle / Journal of Geometry and Physics 35 (2000) 367–385

G2.

(a) δ1 ∈ {±1}, δ2 = 1, δ3 = 1 :

I = {(k, l, m)|k, l, m ∈ Z, m ≥ 1} ∪ {(k, l, m)|k, l ∈ Z, l ≥ 1, m = 0},

λ±
klm = ±2π

√
1

H 2

(
k + 1

2

)2

+ 1

L2
l2 + 1

S2

(
m − T

L
l

)2

.

(b) δ1 ∈ {±1}, δ2 = −1, δ3 = 1 : I = {(k, l, m)|k, l, m ∈ Z, l ≥ 0},

λ±
klm = ±2π

√
1

H 2

(
k + 1

2

)2

+ 1

L2

(
l + 1

2

)2

+ 1

S2

(
m − T

L

(
l + 1

2

))2

.

(c) δ1 ∈ {±1}, δ2 = 1, δ3 = −1 : I = {(k, l, m)|k, l, m ∈ Z, m ≥ 0},

λ±
klm = ±2π

√
1

H 2

(
k + 1

2

)2

+ 1

L2
l2 + 1

S2

((
m + 1

2

)
− T

L
l

)2

.

(d) δ1 ∈ {±1}, δ2 = −1, δ3 = −1 : I = {(k, l, m)|k, l, m ∈ Z, l ≥ 0},

λ±
klm= ± 2π

√
1

H 2

(
k+1

2

)2

+ 1

L2

(
l+1

2

)2

+ 1

S2

((
m + 1

2

)
− T

L

(
l + 1

2

))2

.

G3.

(a) δ1 = 1 : I = {(k, l, m)|k, l, m ∈ Z, l ≥ 1, m = 0, . . . , l − 1},

λ±
klm = ±2π

√
1

H 2

(
k + 1

2

)2

+ 1

L2
l2 + 1

3L2
(l − 2m)2.

(b) δ1 = −1 : I = {(k, l, m)|k, l, m ∈ Z, l ≥ 1, m = 0, . . . , l − 1},

λ±
klm = ±2π

√
1

H 2
k2 + 1

L2
l2 + 1

3L2
(l − 2m)2.

G4.

(a) δ1 ∈ {±1}, δ2 = 1 : I = {(k, l, m)|k, l, m ∈ Z, l ≥ 1, m = 0, . . . , 2l − 1},

λ±
klm = ±2π

√
1

H 2

(
k + 1

2

)2

+ 1

L2

(
l2 + (m − l)2

)
.

(b) δ1 ∈ {±1}, δ2 = −1 :

I = {(k, l, m)|k, l, m ∈ Z, l ≥ 1, m = 0, . . . , 2l − 2},

λ±
klm = ±2π

√√√√ 1

H 2

(
k + 1

2

)2

+ 1

L2

((
l − 1

2

)2

+
(

m − l + 1

2

)2
)

.
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G5.

δ1 ∈ {±1} : I = {(k, l, m)|k, l, m ∈ Z, l ≥ 1, m = 0, . . . , l − 1},

λ±
klm = ±2π

√
1

H 2

(
k + 1

2

)2

+ 1

L2
l2 + 1

3L2
(2l − m)2.

G6.

δ1, δ2, δ3 ∈ {±1} with δ1 · δ2 · δ3 = 1 : I = {(k, l, m)|k, l, m ∈ Z, l ≥ 0, k ≥ 0},

λ±
klm = ±2π

√
1

H 2

(
k + 1

2

)2

+ 1

L2

(
l + 1

2

)2

+ 1

S2

(
m + 1

2

)2

.

For G3 the multiplicity for everyλ±
klm is given by

mult(λ±
klm, D) = 2 · #{(k′, l′, m′) ∈ I |λ±

k′l′m′ = λ±
klm}.

For all the other cases one has

mult(λ±
klm, D) = #{(k′, l′, m′) ∈ I |λ±

k′l′m′ = λ±
klm}.

Proof. We need concrete procedures to count the maximal orbits. For G2–G5 the holonomies
consist of rotations around thez-axis. In these cases the orbits sit in planes which are parallel
to thex-y-plane. The following pictures illustrate how to find representing elements of the
orbits in these planes. They are marked by the filled circles.

In the case G2(a) we take the system of representatives:

{bklm|(k, l, m) ∈ I } with I as in the theorem,

wherebklm = (k + 1
2)a∗

1 + la∗
2 + ma∗

3.
For G2(c) we choose the representativesbklm = (k + 1

2)a∗
1 + la∗

2 + (m + 1
2)a∗

3, k, l, m ∈
Z, m ≥ 0.

In the cases G2(b) one has to replacel by (l + 1
2) and(m + 1

2) by m to get suitablebklm.
The case G2(d) is analogous. For these cases we choose the following representatives:

bklm

G4(a) (k + 1
2)a∗

1 + la∗
2 + (m − l)a∗

3 k ∈ Z, l ≥ 1, m = 0, . . . , 2l − 1
G4(b) (k + 1

2)a∗
1 + (l − 1

2)a∗
2 + (m − l + 1

2)a∗
3 k ∈ Z, l ≥ 1, m = 0, . . . , 2l − 2

G5 (k + 1
2)a∗

1 + la∗
2 − ma∗

3 k ∈ Z, l ≥ 1, m = 0, . . . , l − 1
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For G3(a) one has the same0∗ + aε as in the case of G5. Every maximalr(G5)-orbit is
the disjoint union of two maximalr(G3)-orbits. Therefore, we get the same spectrum as in
the case of G5, but the multiplicities are doubled. For G3(b) replace(k + 1) by k.

Again, the case G6 differs from the other cases: every maximal orbit consists of four
points which do not sit in a common plane. We take the representing elements:bklm =
(k + 1

2)a∗
1 + (l + 1

2)a∗
2 + (m + 1

2)a∗
3 with m ∈ Z, k, l ≥ 0. �

6. Parallel spinors

The remaining section deals with parallel spinors.

Theorem 6.1. Let M be a three-dimensional compact connected spin manifold carrying a
non-zero parallel spinor. Then M is a flat torus.

Proof. Friedrich showed in [6] that manifolds admitting non-vanishing parallel spinors are
Ricci flat. In the case of dimension 3 this implies flatness. Therefore,M is Bieberbach. The
kernel of the Dirac operator is non-trivial since parallel spinors are harmonic. Applying
Theorem 5.1 finishes the proof. �

The last theorem gives a characterisation of flat tori in the class of Bieberbach manifolds.

Theorem 6.2. LetM = G\Rn be a Bieberbach manifold carrying the induced orientation
and the spin structure associated toε : G → Spin(n). If the kernel of the Dirac operator
has dimension2[n/2], M is a flat torus.

Proof. A consequence of dimension 2[n/2] is that ker(D) = 6n. Hence for allg ∈ G, σ ∈
6n we haveσ = ε(g) · σ . Since the representation of Spin(n) on6n is faithful, it follows
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that ε ≡ 1. The conditionr = λ ◦ ε for spin structures impliesr ≡ 1. This means that
G = ker(r) is a lattice, andM is a torus. �
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